1,239 research outputs found

    A Hybrid Deep Learning Approach for Texture Analysis

    Full text link
    Texture classification is a problem that has various applications such as remote sensing and forest species recognition. Solutions tend to be custom fit to the dataset used but fails to generalize. The Convolutional Neural Network (CNN) in combination with Support Vector Machine (SVM) form a robust selection between powerful invariant feature extractor and accurate classifier. The fusion of experts provides stability in classification rates among different datasets

    AROMA: Automatic Generation of Radio Maps for Localization Systems

    Full text link
    WLAN localization has become an active research field recently. Due to the wide WLAN deployment, WLAN localization provides ubiquitous coverage and adds to the value of the wireless network by providing the location of its users without using any additional hardware. However, WLAN localization systems usually require constructing a radio map, which is a major barrier of WLAN localization systems' deployment. The radio map stores information about the signal strength from different signal strength streams at selected locations in the site of interest. Typical construction of a radio map involves measurements and calibrations making it a tedious and time-consuming operation. In this paper, we present the AROMA system that automatically constructs accurate active and passive radio maps for both device-based and device-free WLAN localization systems. AROMA has three main goals: high accuracy, low computational requirements, and minimum user overhead. To achieve high accuracy, AROMA uses 3D ray tracing enhanced with the uniform theory of diffraction (UTD) to model the electric field behavior and the human shadowing effect. AROMA also automates a number of routine tasks, such as importing building models and automatic sampling of the area of interest, to reduce the user's overhead. Finally, AROMA uses a number of optimization techniques to reduce the computational requirements. We present our system architecture and describe the details of its different components that allow AROMA to achieve its goals. We evaluate AROMA in two different testbeds. Our experiments show that the predicted signal strength differs from the measurements by a maximum average absolute error of 3.18 dBm achieving a maximum localization error of 2.44m for both the device-based and device-free cases.Comment: 14 pages, 17 figure

    Overlapping Multi-hop Clustering for Wireless Sensor Networks

    Full text link
    Clustering is a standard approach for achieving efficient and scalable performance in wireless sensor networks. Traditionally, clustering algorithms aim at generating a number of disjoint clusters that satisfy some criteria. In this paper, we formulate a novel clustering problem that aims at generating overlapping multi-hop clusters. Overlapping clusters are useful in many sensor network applications, including inter-cluster routing, node localization, and time synchronization protocols. We also propose a randomized, distributed multi-hop clustering algorithm (KOCA) for solving the overlapping clustering problem. KOCA aims at generating connected overlapping clusters that cover the entire sensor network with a specific average overlapping degree. Through analysis and simulation experiments we show how to select the different values of the parameters to achieve the clustering process objectives. Moreover, the results show that KOCA produces approximately equal-sized clusters, which allows distributing the load evenly over different clusters. In addition, KOCA is scalable; the clustering formation terminates in a constant time regardless of the network size

    Linear-time Online Action Detection From 3D Skeletal Data Using Bags of Gesturelets

    Full text link
    Sliding window is one direct way to extend a successful recognition system to handle the more challenging detection problem. While action recognition decides only whether or not an action is present in a pre-segmented video sequence, action detection identifies the time interval where the action occurred in an unsegmented video stream. Sliding window approaches for action detection can however be slow as they maximize a classifier score over all possible sub-intervals. Even though new schemes utilize dynamic programming to speed up the search for the optimal sub-interval, they require offline processing on the whole video sequence. In this paper, we propose a novel approach for online action detection based on 3D skeleton sequences extracted from depth data. It identifies the sub-interval with the maximum classifier score in linear time. Furthermore, it is invariant to temporal scale variations and is suitable for real-time applications with low latency

    Design and Syntheses of Novel Quenchers for Fluorescent Hybridization Probes

    Get PDF
    Since most of human diseases are related to genetic mutations, during the past two decades, identification of such mutations has attracted much attention. Detection of these mutations is mainly based hybridization with the complementary reporter probes. Nucleic acids detection takes place by changing either the reporter’s fluorescence intensity or the colour of its fluorescence. The use of fluorescent probes for nucleic acid detection has attracted much attention due to its efficiency, the ease of synthesis and availability of commercial reporters that facilitates the probe synthesis. Nowadays, most of nucleic acid detection using fluorescent probes relies on quenching of fluorescence by energy transfer from one fluorophore to another or to nonfluorescent molecule (quencher). The most common, widely used, quencher in fluorescent probes is 4-(N,N-dimethylamino)azobenzene-4\u27-carboxylic acid (DABCYL). The goal of this thesis was to introduce new quenchers which structurally mimic the universal quencher DABCYL into peptide nucleic acid (PNA), DNA and RNA probes. These quenchers are also characterized by their ability to undergo photoisomerization upon illumination with light

    Driver Distraction Identification with an Ensemble of Convolutional Neural Networks

    Full text link
    The World Health Organization (WHO) reported 1.25 million deaths yearly due to road traffic accidents worldwide and the number has been continuously increasing over the last few years. Nearly fifth of these accidents are caused by distracted drivers. Existing work of distracted driver detection is concerned with a small set of distractions (mostly, cell phone usage). Unreliable ad-hoc methods are often used.In this paper, we present the first publicly available dataset for driver distraction identification with more distraction postures than existing alternatives. In addition, we propose a reliable deep learning-based solution that achieves a 90% accuracy. The system consists of a genetically-weighted ensemble of convolutional neural networks, we show that a weighted ensemble of classifiers using a genetic algorithm yields in a better classification confidence. We also study the effect of different visual elements in distraction detection by means of face and hand localizations, and skin segmentation. Finally, we present a thinned version of our ensemble that could achieve 84.64% classification accuracy and operate in a real-time environment.Comment: arXiv admin note: substantial text overlap with arXiv:1706.0949
    • …
    corecore